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ABSTRACT

In this paper convergence of finite-dimensional controllers for infinite-dimensional sys-

tems designed using approximations is examined. Stable coprime factorization theory is

used to show that under the standard assumptions of uniform stabilizability/detectability,

the controllers stabilize the original system for large enough model order. The controllers

converge uniformly to an infinite-dimensional controller, as does the closed loop response.
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1 Intror uction

We consider semigroup control systems on a Hilbert space X:

i(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t),

x(O) = xo, Xo E D(A) C X.

The operator A generates a strongly continuous semigroup of operators S(t) on X so A is

closed with domain D(A) dense in X. We assume bounded control and observation, and

that the input and output spaces are finite-dimensional: B E 3(Rm, X), C E B3(X, RP). This

control system will often be abbreviated (A, B, C). For control functions in L2(0, 0x; R m ) we

interpret the solution of (1) in the mild sense: t
y(t) = CS(t)xo + C j S(t - r)Bu(r)dr.

Further details can be found in, for instance [14].

The equations (1) are a model for a number of control problems, including those where

the system dynamics are described by partial differential equations and hereditary differential

systems. A closed form solution can be computed only in the simplest of situations. In

general, it is necessary to use an numerical approximation to the semigroup control system

(1) in order to simulate the response of the system . This approximation will typically be a

system of n ordinary differential equations, which we write as

i(t) = Ax(t) + Bnu(t), (2)

y(t) = C-x(t),

x(O) = Xon.

This approximation is also used to compute controllers for the original system (1). Further

details on the approximation scheme will be presented in a subsequent section. The above

finite-dimensional system will often be abbreviated as (An, Bn, Cn).

In this paper, we are concerned with finite-dimensional controllers of the form

i(t) = (An - BK)z(t) + F(y(t) - Cnz(t)) (3)

un(t) = Knz(t).

There are a number of convergence questions associated with this approach:
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* Does the controller (3) stabilize (1) for large enough n?

* Do the controllers (3) converge to an infinite-dimensional controller?

* What relation does the closed loop performance of the controller (3) with (A., B,,, C.)
have to its implementation with the original system (A, B, C)?

Convergence in the graph topology [18, 19] of the approximating systems to the origi-
nal system is necessary for the validity of an approximation scheme as a basis for controller

design. Convergence in the graph topology is equivalent to convergence of a sequence of
coprime factors (Na, D,,) for the approximations to a coprime factorization for the original

system. Without such convergence it cannot be concluded that a controller which stabi-

lizes (A, B, C) also stabilizes (A,,, B,, C,,) for sufficiently large n, or that the closed loop

responses converge. In fact, in the absence of convergence in the graph topology, the set of

controllers which stabilize both the infinite-dimensional system (A, B, C) and the approxi-

mations (A,,, B,,, C,,) may be empty, even for large n.

In this paper this approach is used to obtain complete answers to the above questions

for a wide class of systems. A complete answer to the problem of convergence of LQG type

controllers is given. Although the graph topology is the fundamental topology underlying

these convergence questions, it is not used explicitly in this paper. All results are derived

directly using only theory on Bezout, or stable coprime factors. First, some background

material on stable coprime factorizations is given.

2 Stable Coprime Factorizations

Suppose a system of the form (1) with xo = 0 maps inputs in C2 (0, oo, R-) to outputs in

4C2(0, oo, RP), and that furthermore, there is a maximum ratio, the £2-gain between the norm

of the output and the norm of the input:

11 Y11r 20,,,RP) <! 711 Ullr-1,(o, ,R,-).

Then the system is said to be C2-stable, and by the Paley-Weiner Theorem, the Laplace

transform of such a system is a matrix with entries in 71,,, . Here 7(, indicates the Hardy

space of functions G(s) which are analytic in the right-half plane Re(s) > 0 and for which

sup sup jG(x + jw)I < oo.
x>O

The norm of a function in H"). is

11 GI11 = sup sup IG(x + jw)I.
W X>O

1)



We denote matrices with entries in 7H"/o by M( 7"oo ). The norm of a function in M( "i0 )
is the induced matrix norm

I GII00 = supsup& [G(x + jw)]
x>O w

where & denotes the largest singular value.

The Laplace transform of a linear time-invariant system such as (1) is called its

transfer function and is given by CR(s; A)B where R(s; A) indicates the resolvant of A.

Suppose G is the transfer function of a given system, for which we wish to design a controller

with transfer functic. H, of compatible dimensions, arranged in the feedback configuration

shown in Figure 1.
r2

Figure 1. Feedback System

The 2 x 2 transfer matrix A(G, H) which maps the pair (ri, r2) into the pair (el, e2) is given

by

A (I + GH)-I  -G(I + HG)- I1
H(I + GH) - 1 (I + HG)-'

The feedback system, or alternatively the pair (G, H), is said to be externally stable if each

of the four elements in the above matrix belongs to the set S of stable transfer functions. We

could define stability in terms of the transfer matrix from (rl, r2 ) to (yl, y2); both notions of

stability are equivalent [191. Definition of S depends upon the application. Thus the closed

loop system is £ 2-stable if and only if all four elements belong to M( 7" ). The set of all

plants which stabilize G is written S(G):

S(G) = {H I A(G,H) E M( 1,, )I.

Note that the present definition of stability is symmetric in G and H. Thus G stabilizes H

if and only if H stabilizes G.

For the common situation where the system is already stable and an aim of controller

design is to improve the settling time of the system, we specify a real number 0 > 0 which

is the minimum acceptable stability margin. Then a system is said to be input/output
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a -stable if its shifted transfer function G(s - a) is in M( 7-4H, ). Equivalently, we replace

'H... by the algebra H,,, of functions which are analytic in the right half plane Re(s) > -a,

and for which
sup sup IG(x + Jw)I < o

U;x>-a

with corresponding norm.

Much of modern control theory is concerned with coprime factorizations of systems.

The transfer function of a possibly unstable system G is written as the ratio of two coprime

stable systems. For the case of £ 2-stability, the transfer function of a system is written as

G = ND-' where N, D E M( -o ) and there exists X, Y E M( 'H ) with

X(s)N(s) + Y(s)D(s) = I, Re(s) _> 0. (4)

(N, D) is called a right coprime factorization (r.c.f.) for G. Left coprime factorizations

(1.c.f.'s) are defined similarly. (',D) is a l.c.f for G if G - 1 where N,D E M( 7H,, )
and there exists X, Y E M( 7- . ) with

f1(s)fX(s) + b(s)I'(s) - I, Re(s) >_ 0. (5)

Every system which is described by a system of linear time-invariant ordinary differential

equations has both a left- and a right-coprime factorization. (This is a consequence of the fact

that the transfer functions of such plants are composed of rational functions.) Furthermore,

the set of all stabilizing controllers for such plants may be described in terms of the Youla

parameterization; a controller H externally stabilizes G if and only if it can be written

H = (Y- RN)-'(X + RD), Y- RN!j A 0,R E M( 7-1,, ) (6)

where X, Y, N, D are as defined in (4), (5). The set of all stabilizing controllers for a given

system G are parameterized by R, as R ranges over all stable systems. In other words,

S(G) = {(Y - R~f)-'(X + RD), JY - RIV :A 0,R E M( '1,, )}. (7)

The above formulation (7) is in terms of left coprime factors of the stabilizing con-

trollers. The same family, S(G) may also be written in terms of right coprime factors:

S(G) = {(f( + DQ)(Y - NQ)- ', IY - NQI # 0,Q E M( 7 )}. (8)

Unfortunately, more general systems, which do not have rational transfer functions, do not

necessarily have either a left- or a right-coprime factorization. However, any system with a

transfer function which can be written as a fraction ND -1, N, D E M( 7"H,, ), is stabilizable
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if and only if it has right (and left) coprime factorizations [16] . For systems of the type (1),

the theory is more complete. First, some definitions are required.

Definition 1.1: The Co-semigroup T(t) is stable if there exist constants M and

a > 0 such that jjT(t)j < Me' for all t > 0.

Definition 1.2 A semigroup control system (A, B, C)is said to be internally stable if

the semigroup generated by A is stable according to Definition 1.1 .

Definition 1.3: The pair (A, B) is stabilizable if there exists a bounded linear oper-

ator K : X --+ R m such that A - BK generates a stable semigroup.

Definition 1.4: The pair (A, C) is detectable if there exists a bounded linear operator

F : R P -- X such that A - FC generates a stable semigroup.

Definition 1.5: The system (A, B, C) is jointly stabilizable/detectable if (A, B) is

stabilizable and (A, C) is detectable.

The extensions to a-stable, a-stabilizable etc. are straightforward.

Jointly stabilizable/detectable systems (A, B, C) have both left and right coprime

factorizations [51. Let K be such that A - BK generates a stable semigroup and F such

that A - FC generates a stable semigroup. Define

N(s) = CR(s, A - BK)B, (9)

D(s) = I - KR(s, A - BK)B, (10)

X(s) = KR(s, A - FC)F,

and

Y(s) = I + KR(s, A - FC)B,

XN + YD = I.

(N, D) is a r.c.f for the system i.e. CR(s; A)B = ND-1 [10] and the Youla parameterization

describes all stabilizing controllers for these systems. A 1.c.f. can be defined similarly, using

an operator F such that A - FC generates a stable semigroup. Define

T(s) = CR(s, A - FC)B

D(s) = I-CR(s, A - FC)F.

Then, G(s) D-: b-'(s)N(s) and
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for some X, Y E M( 7"Woo).

It is easy to show, using the Hille-Yosida Theorem, that internally stable control

systems (1) are externally stable. We are also assured that external stability implies internal

exponential stability:

Theorem 2.1 [10] A jointly stabilizable/detectable semigroup control system is internally

stable if and only if it is externally stable.

This equivalence justifies the use of controller design techniques based on system

input/output behaviour for infinite-dimensional systems of the form (1). The discussion

above is summarized in the following theorem.

Theorem 2.2 Assume (A, B, C) is jointly stabilizable/detectable and let G be the transfer

function of the system. We say that a controller with transfer function H stabilizes G if the

closed loop matrix A(G, H) E M( R.,o ). Then H stabilizes the system, if and only if, its

transfer function can be written using the Youla parameterization (7) (or (8) ).

Also, if the state-space representations of the systems G and H are each stabilizable

and detectable, then H stabilizes G, according to the definition at the beginning of this

section, if and only if the closed loop is also internally stable.

Theorem 2.3 [10] Assume (A, B, C) is jointly stabilizable/detectable and that H is a con-

troller with a jointly stabilizable/detectable realization (A,, B,, C,). The closed loop system

is input/output stable if and only if it is internally stable.

The following is by now well-known, and several proofs exist. One version, which uses

coprime factorizations, and which first appeared in [13] is given here.

Theorem 2.4 Every jointly stabilizable/detectable system (1) is stabilizable by a finite-

dimensional controller.

Proof: Both the stable factors N, D have well-defined limits at infinity:

lim 5(N(s)) = 0, lim 5(D(s)) = 1.

I . -os I-.oo
Re(a)>_0 Re(s)_>O

It follows (Mergelyan's Theorem) that each factor can be approximated by a rational element

of M( "H ): for any c > 0 we can find rational N,,, Dn E M( ?"/ ), with

II N(s) - N(s)ll. <, 1 D(s) - Dn(s)II <f
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For sufficiently small e, (Nn, Dn) is also a coprime pair. Let (X, Y) be a l.c.f of any

finite-dimensional controller which stabilizes ND, -' with XN, + YD, = I. Then, if c

is small enough, Y-'X also stabilizes the infinite-dimensional system since XN + YD = U

where U has an inverse in M( 7-R. ). Rewriting, we have X(NU- 1) + Y(DU - 1) = I. Since

(NU- ', DU - ') is a r.c.f. for the infinite-dimensional system (1) , it follows that every jointly

stabilizable/detectable control system (1) is stabilizable by a finite-dimensional controller.

0

3 Approximation Scheme

In this paper we are interested in the case where a finite-dimensional controller is designed

using a numerical approximation to the original system.

Suppose we have a sequence of finite-dimensional subspaces Xn C X where the norm

on X, is that inherited from X. Define Px as the orthogonal projection of x E X onto the

finite-dimensional subspace Xn. We assume the following:

(Al) The projection operators P, converge strongly to the identity on the Hilbert space X.

That is, for all x E X
lim I FT&X - xll U.

For each X,, the approximating system is (An, Bn, Cn):

Bn := PB, Cn := CIx,

and An is an approximation to A which satisfies the two assumptions (A2) and (A3) below.

Note that the operators An, B,,. C and the semigroup Tn(t) generated by A, are operators

on Xn.

A core C of a closed operator A is a linear space contained in the domain of A with

the property that the set of elements (x, Ax), x E C is dense in the graph 9(A) of the

operator A ([11], pg. 166).

(A2) We assume that there exists a core C for A such that

lim IIPnAx - A,,PnXfJ = 0, for all x C C. (11)

Such an approximation scheme is said to be consistent.
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(A3) We will further assume that the semigroups Tn(t) generated by A,, are uniformly

bounded, that is, there exist real numbers N, M > 1 and k such that

IlT(t)I < Me k, for all n > N. (12)

(Uniform boundedness of the approximate semigroups is generally referred to as "sta-

bility" in the numerical analysis literature.)

Consistency and uniform boundedness are sufficient for convergence of the approxi-

mation [11, 14] i.e., for all E > 0,t > 0 and for all x E X there exists N such that

IPT(r)x - T,(T)PX,11 < e for all r E [0, t] and n > N. (13)

Assumptions (A1)-(A3) are satisfied by typical approximation methods. They are

sufficient to ensure that the open loop response of the systems G, approximate the response of

G. (Al) is of course redundant in that it is implied by (13). Assumption (A2) may be replaced

by a requirement of strong convergence of the resolvants. (Trotter-Kato Approximation

Theorem eg. [14]). However, these assumptions are not sufficient to ensure convergence

of the closed loop response. An example of a scheme which approximates the open loop

response of a system but is not satisfactory as a basis for controller design is given in [4].

The appropriate topology in which to establish convergence of the approximations is

the graph topology. The importance of the graph topology in controller design is due to the

following result: A family of plants G, can be robustly stabilized by a compensator H which

stabilizes a nominal plant G if and only if G, converges to G in the graph topology. Fur-

thermore, in this case, the closed loop response of the feedback pair A(G,., H) converges to

A(G, H). In order to obtain convergence of the closed loop response A(G,., H,) to A(G, H)

for some H E S(G), H,, must also converge to H in the graph topology. The results given

in this paper can be shown directly using the coprime factorization theory outlined in the

previous section. The graph topology is not directly discussed further in this paper, although

it is the topology underlying the convergence results. The interested reader is referred to [19]

for an introduction, [20] for extensions to general algebras, [12] for its application to approx-

imation of semigroup control systems, and [6] for robust stabilizablity under perturbations

in the coprime factors.

Suppose that the approximation scheme also satisfies assumptions of uniform stabil-
i7ability, and uniform detectability:

(A4) If the original system is stabilizable, then the approximations are uniformly stabi-

lizable: there exists a uniformly bounded sequence of operators {K,,} such that for
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sufficiently large ., the semigroups S,_(t) generated by A, - BA', are uniformly

bounded by Me - t for some M > 0, a > 0 and all n > N.

(A5) If tLe original system is detectable, then the approximations are uniformly detectable:

tnere exists a uniformly bounded sequence of operators {F,,} such that for sufficiently

large N, the semigroups Sn(t) generated by A,, - FnC, are uniformly bounded by

Me - t for some M > 0, a > 0 and all n > N.

Common approximation schemes for several important classes of systems which sat-

isfy these assumptions are given below. Not only do both approximation schemes discussed

below satisfy assumptions (A1)-(A5), there exists a sequence of operators K, which sat-

isfy assumption (A4) and which converge strongly to an operator K E B(X, U). Similar

convergence exists for a sequence of operators F which satisfy assumption (AS).

3.1 Hereditary Systems

Consider the delay functional differential equation

i(t)= d(7-)x(t + 7) + Bu(t), t > 0 (14)

y(t) = C~)

x(0) = Xo, x(7) = 0(r), -h < T" < 0

where x(t) E R ' , y(t) E RP, u(t) E R- and B and C are matrices of appropriate dimension.

Also, q(r) is function of bounded variation taking values in R... with r/(r) = 0 and (r)

is left continuous for -h < r < 0. Defir..-ig the state-space X = R' x £ 2(-h,0; R'), the

hereditary system (14) can be formulated as a control system of the form (1) [2].

Define the finite-dimensional subspaces of X to be

XN (,) E X; 0 2(T) = zj, --- h < 7 -(j-) h, j= 1,....NwherezE R'.NX-

The finite-dimensional Galerkin approximation to (14) derived using these subspaces satisfies

assumptions (AL)-(A3) [2, 151. This scheme is known as the averaging approximation to (14).

In [8] it is shown that this scheme is uniformly stabilizable and detectable: assump-

tions (A4) and (A5) are satisfied . It is also shown that the stronger version of (A4) and

(Ah) holds. For a bounded operator K such that A - BK generates a stable semigroup, we

can choose K& = KP,,, K,, satisfies (A4) and lim,-o 11 h, - K11 = 0. Similarly, if (14) is

detectable, we can choose a sequence F, -+ F where A - FC generates a stable semigroup

and F,, is a sequence which satisfies (Ah).
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3.2 Sectorial Operators

Define A through a continuous sesquilinear form a : V x V -, C

(-A€b, 0) = a(€,V), € E D(A), V E V. (15)

where (.,.) indicates the inner product on X, V is a Hilbert space , D(A) C V and V is

densely and continuously in X. In order to avoid confusion with the norm on X, the norm

on V will be indicated by 11 JIV. Identify X with its dual so that V---+X = X'-V'. We

assume that in addition to (15), a(, ) satisfies Harding's inequality: there exists k, c > 0 such

that

a(u,u) + k(u,u) > ci u, 2 . (16)

The inequalities (15) and (16) guarantee that A generates an analytic semigroup with bound

11 T(t)ll < ekt.

Further details may be found in [17]. Assume that the approximating subspaces X, satisfy

a V-approximation property: for all x E V there exists a sequence x,, E X, with

(H1) lira n x" - xH1V = 0.

It is shown in [12] that this class of semigroup control systems, with a sequence of ap-

proximating subspaces which satisfy assumption (HI), leads to a sequence of approximating

control systems which satisfy assumptions (A1)-(A5) of the previous section. Furthermore,

as in section (3.1) we can choose If, F so that K,, -- K and Fn --* F.

Note that it is only required that projections onto Xn converge in the V-norm. A

similar result in [8] requires an inverse approximation property:

inf 11 R(s; A)z - xll V < cl(n)l zll x

inf II R(s; A )z - x1[v < C2(n)j zllX
xE X,

where q(N),c 2(N) -- 0 as N -* c. These conditions are stronger, and more difficult

to verify than (HI). Furthermore, the above conditions can only be satisfied if R(s; A) is

compact. Problems such as control of structural vibrations vith Kelvin-Voigt damping are

thus excluded.
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4 Controller Convergence

It will now be shown that if both (A4) and (A5) hold in addition to the usual (A1)-(A3),

then for large enough model order, the finite-dimensional controllers stabilize the semigroup

control system (1). If a stronger version of (A4) and (A5) holds, then the controllers con-

verge uniformly ( in M( 7"H, ) to an infinite-dimensional controller, and the closed loop

performance obtained with the finite-dimensional controllers converges to the closed loop

performance obtained with the infinite-dimensional controller.

Theorem 4.1 Assume the semigroup control system (1) is jointly stabilizable/detectable

and that the approximations used in design of the finite-dimensional controllers (3) satisfy

assumptions (A1)-(A5). Denote the transfer functions of the controllers by H,1 and the

transfer function of (1) by G. Assume, in addition, that the feedback operators Kn converge

strongly to an operator K E B (X, U):

lim K 1 Px = Kx, x E X.
n7-00

Then, for sufficiently large n, H,1 stabilizes the infinite-dimensional system G. For such n,

the operators

Ao,1 =[FnC An - Bn K 1- F,1 C,1  (17)

generate stable semigroups.

Proof: Define

Xn(s) = KnR(s, A,n - FnCn)Fn

and

Y,(s) = I + Kn R(s, An - Fn Cn)B .

It is well-known (eg. [19]) that (Xn, Yn) is a l.c.f. for the finite-dimensional controller Hn,

and that

XN, + Y,,D, = I

where (N,,D,,) is the r.c.f of G, defined by (9) and (10) using the stabilizing feedback

operator K,,.

It is clear from the assumptions that

II [Xn Y1. < M

for some constant M. Let (N, D) be the r.c.f. of G defined by (9) and (10) using the stabil-

izing feedback controller K. It was shown in [12] that lim,,_,.0 Nn = N and limn,, D,, = D

11



and so, for sufficiently large n, say n > no,

11 [X. n N ND . I<1 n >no.

It follows that

U. = X.N + YD

has an inverse in M( 7-H,, ) for n > n0 .

The closed loop matrix A(G, Hn) can be written in terms of G = ND-' and Hn =

Yj' X. as
A(G, Hn)= I -NU 1-' X n -NUl Y n ]

D U;I X, D U,- Yn •

Since A(G, H,,) E M( 'Hc, ) the closed loop system is, by definition input/output stable. It

is trivial to show that Aon is the infinitesimal generator for the closed loop system. Internal

stability of the closed loop follows from the fact that the controller is stable and Theorem

2.3. Hence, Aon generates an exponentially stable semigroup. Alternatively, it can be shown

directly that the closed loop system is stabilizable and detectable and Theorem 2.1 applied.

0

The dual situation, where K,, is bounded and Fn converges strongly to an operator

F , can be shown identically, using convergence of a sequence of l.c.f's of the systems G,,

and boundedness of r.c.f.'s of the compensators Hn. We also have the following:

Corollary 4.2 Let a be as in assumptions (A4)-(A5) and let a be any real number,

a > a > 0. For n sufficiently large, the operator A,,, (17) generates an a-stable semigroup.

Proof: As a consequence of assumptions (A4) and (A5) we can replace input/output stability

and internal stability by input/output a-stability and internal a-stability in the previous

theorem. The algebra 7H. is replaced by the shifted algebra H,,,. 0

Theorem 4.3 Assume that the approximation scheme satisfies assumptions (A)-(A,5) and

that the compensator design sequence is convergent:

lim KnPnx = Kx,

for all x E X and

lim Fy = Fy

for all y E RP . Let H denote the transfer function of the infinite-dimensional controller

whose state-space realization is

i(t) = (A - BK)z(t) + F(u(t) - Cz(t)) (18)
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y(t) = Kz(t).

The controller transfer functions H,, converge in M( 7R00 ) (i.e. uniformly in s) to H.

Proof: We first show that l.c.f. 's of the controller converge:

liM 11 X - X,. 00 = 0, lim 11 Y - Y'I1oo = 0.

Define Xn, Yn as in Theorem 4.1 . Denoting the semigroup generated by An - FnCn by

SFn(t), the time-domain representations of these transfer functions are

Xn(t) := KnSvn(t)rn,

Yn(t):= b(t)I + KnSFn(t)Bn

where 6(t) denotes the Dirac delta distribution. Define

X(t) := KSF(t)F,

Y(t) := 6(t)I + KSF(t)B.

The proof is identical to that used to show convergence of coprime factors of the approxi-

mating systems in [121. Due to convergence of Kn to K, and Fn to F, we can show that,

lim II Xn(t) - X(t)llR.+,dt = 0,

lim ] n(t) - Y(t)llR,+,dt = 0

where Rm+p indicates some norm on operators from R m to RP. Convergence in this norm

implies convergence of the Laplace transforms of these functions in M( 700 ). Each controller

H,, and the infinite-dimensional controller H are stable (elements of M( R-0' )). This implies

that, Y, Y are invertible in M(7{00 ) and since limn, 00 11 Y - Y1100 = 0,

lim 11 Y]n- 1 - Y-'11 00 = 0
n--+00

and H. converges to H in norm. (This reflects the fact that the uniform topology is the

restriction of the graph topology to stable systems.) Since (X, Y) is a l.c.f. for the infinite-

dimensional controller H, the result follows. E0

Note that the controllers actually converge in the stronger norm:

lim J Hn(t) - H(t)IIR.+Pe'dt = 0,

where a > -' > 0 (a as in (A4) and (A5)) although this is not used here.
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Corollary 4.4 The closed loop operator A(G, H,,) converges in M( 1*too ) to A(G, H).

We can write the closed loop operator A(G, H) in terms of stable coprime factors as

A(GH)= [ I -NX -NY

and similarly,

A(Gn Hn) I [ I - N nX n -NY 1
' D.X. D.nY

The result now follows from convergence of the coprime factors. El

Thus we have shown uniform convergence of the controllers to an infinite-dimensional

controller, and similar convergence of the closed-loop systems.

4.1 LQG Optimal Control

Commonly, a compensator of the form (18) is designed in two steps, through construc-

tion of an optimal regulator and an optimal detector. Assume that (1) is jointly stabiliz-

able/detectable, so that construction of an internally stable closed loop is possible.

If Q is a self-adjoint positive semi-definite operator and R is self-adjoint positive

definite, then the optimal solution of

J(u) = j (Qx(t), x(t))x + (Ru(t), u(t))dt

is given by the feedback u(t) = -Kx(t) where K := B* R-'f and R is the unique, non-

negative, self-adjoint solution of the algebraic Riccati equation,

( A* H + HA - BR-' B* H + Q)z = 0, for all z E D(A). (19)

The operator A - BK generates a stable semigroup on X.

Similarly, we may obtain the observer gain F by solving the dual problem

AE + E A* - E C* RolCE + Q, = 0 (20)

where Q, is self-adjoint positive semi-definite and Ro is self-adjoint positive definite. Setting

F = E C" RJ 1 where E is the unique, nonnegative, self-adjoint solution to the above Riccati

equation, A - FC generates a stable semigroup on X.

Since the above infinite-dimensional Riccati equations cannot be solved exactly, ap-

proximate solutions are calculated by using the approximations A,, B", C". Thus, if the ap-

proximations are stabilizable, we obtain &' = R B, I where II,, solves, for Q, = PnQP",

n, II, + rlA. - IH.B.R - B, fl, + Q. = 0. (21)
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Similarly, if the approximations are detectable, the operators F = E, C R are found by

solving, for Qo0 , = P,,QoPn,

A,, + r,, A* - E, Q, RolC,,E, + Q, = 0. (22)

The theory on convergence of solutions of approximating Riccati equations is fairly

complete, and we can state the following which is a consequence of [3] and the theorems in the

previous section. Convergence of the solutions requires that the adjoint semigroups S*(t)

converge strongly, uniformly on bounded intervals, to S*(t). This assumption, together with

(A1)-(A5) implies the stronger versions of (A4) and (A) required for Theorems 4.1-4.3.

Theorem 4.5 Assume that the approximation scheme satisfies the usual (A1)-(A3) and that

it is uniformly stabilizable (A4) and uniformly detectable (A5). Assume also, that for every

x E X, the adjoint semigroups Sn* (t) converge strongly, uniformly on bounded intervals, to

S" (t):

lim sup 11 Sn (t)Px - Pn S* (t)xI = 0, T > 0. (23)
n-oo O<t<T

Then:

1. The controller (3) obtained by solving the finite-dimensional ARE's (21) and (22) to

obtain Kn, F stabilizes the infinite-dimensional system for all sufficiently large n.

2. This closed loop system is internally o-stable, for any o < a.

3. The controller transfer functions converge uniformly (i.e. in M( R"" )) to the trans-

fer function of the optimal regulator/observer (18) obtained by solving the infinite-

dimensional ARE's.

4. The closed loop operator A(Gn,Hn) converges uniformly to A(G,H).

Proof: It has been shown [3] that these assumptions are sufficient to guarantee that

limn--.o Knx = Kx and that lim,,--+o Fy = Fy and that these feedback operators yield

uniformly stable semigroups : (A4) and (A5) are satisfied. The conclusions now follow

immediately from Theorems 4.1-4.3 .0
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5 Conclusions

A similar result to Theorem 3.1 and Corollary 3.2 has been shown in [8]. However, the use of

coprime factorizations leads to a considerably shorter proof. Also, the results in [8] depend

on several assumptions that are not required here. Unlike [8], the spectrum determined

growth assumption not required at any point. Furthermore, both classes of approximation

schemes discussed in [8] have the property that the resolvants of the approximations converge

in norm to the original resolvant:

lir1 R(A, A) - R(A, A)II - 0

and this property is used in the proofs. This restricts the class of systems under consider-

ation to those with compact resolvants, and the approximation scheme to those with this

convergence property. As demonstrated here, these assumptions are not necessary.
The results here showing uniform convergence of a sequence of controllers, and of the

corresponding closed-loop systems, have not been previously obtained. Gibson and Adamian

[7] study the problem of convergence of LQG controller design for flexible structures, when

the controller is designed using approximations to the solution of the partial differential

equation describing the vibrations. Numerical results in [7], for finite-element approximations

to structural vibrations indicated convergence of the controller transfer functions, but the

authors were unable to prove Theorem (4.3) in the general case.

One important consequence of convergence of the controller transfer functions, is that

it justifies the use of such order reduction methods as Hankel norm reductions, balanced trun-

cations, and coprime factor reduction. The order of the approximation (2) could be increased

until the controllers (3) have converged sufficiently in M( R... ). The numerical results in

[7] for control of structural vibrations indicate that at least in some cases, convergence is

obtained fairly quickly. The controller order can then be reduced using a standard technique

such as balancf d realizations.
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